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Total TDS intensity for 
slower-than-sound neutrons (1~ > 1) 

Referring to Fig. 4, we need to integrate the differen- 

[ do(q) ~ (') 
tial cross-section \ dO } over all modes with wave- 

vectors q terminating on the surface of the ellipsoid. 
Considering first the modes ql and qz belonging to 

the same scattering direction k, we find using equa- 
tion (6) that 

_d_°'(q 1) _[_ d°'(_q2) _ 

d.(2 d ~  

NQ 2 kBT 
m c~ F(Q)2 " 

× 1) 2" 

Here r/,, r/± are the projections of the vector 11, joining 
the reciprocal lattice point to the Ewald sphere, along 
and perpendicular to the scattering direction. By tak- 
ing the q vectors in pairs the integration over the ellip- 
soid is reduced to an integration over a circle of radius 
R, representing the projection of the ellipsoid on the 
Ewald plane. The total one-phonon cross-section for a 
given setting of the crystal is therefore 

o'I-- 
NQ 2 kBT I R fl 

m cs z F(Q)2 0 ;)~l/i'il}~--l)(q~q~)2" 
1 

x 2qldq±.  k~ " 

Putting sin x = r/_~_ (f12_ 1)1/2, 
r/H 

r/2l~(~_i~-- D ~ : /~ i )z ]  = __ ___ _ . . _ _ . _ -  t anh-a  , 
w0 

so that finally 

o'1 . . . . . . . . . .  F(Q) 2 2k~ tanh -1 
m ¢2 • 

Thus o'x increases from nothing at very long neutron 
wavelengths ( f in  1) to a maximum at the critical wave- 
length, fl--1. It is independent of the deviation, A0, 
of the crystal from the Bragg setting. 
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The Elastic Constants of the Trielinie Crystals Ammonium and Potassium 
Tetroxalate Dihydrate 

BY H. KOPPERS AND H. SIEGERT 

Institut fi~r Kristallographie der Universitdt zu K6ln, Germany 

(Received 30 December 1969) 

In the triclinic crystals ammonium and potassium tetroxalate dihydrate 34 and 31 sound velocities 
respectively were measured by means of the diffraction of light by ultrasonic waves. From these velocities 
the 21 independent components of the elastic tensor were calculated. Thus, the method first tested by 
Haussiihl & Siegert on CuSO4.5H20 was successfully applied to two other triclinic crystals. The com- 
pounds under investigation were found to exhibit an extremely high elastic anisotropy. 

Introduction 

The elastic behaviour of triclinic crystals is described 
by a fourth-rank tensor containing 21 independent 
components. The determination of these 21 constants 
from measurements of sound velocities involves, apart  

from a larger experimental expenditure, severe nu- 
merical difficulties. Haussiihl & Siegert (1969) deter- 
mined for the first time the elastic constants of a tri- 
clinic crystal, CuSO4.5 HzO. It is the aim of the present 
investigation to apply the method used by Haussiihl 
& Siegert (1969) to other crystals in order to test 
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its applicability and sensitivity. For this purpose we 
chose ammonium tetroxalate dihydrate (ATO), 
NH4H3(C204)2.2H20, and potassium tetroxalate di- 
hydrate (KTO), KH3(C204)2.2 H20, two isotypical tri- 
clinic crystals, which, compared with CuSO4.5H20, 
exhibit a higher optical and elastic anisotropy. 

M e t h o d s  

Sound velocity was measured using the improved 
Schaefer-Bergmann method (light diffraction by ultra- 
sonic waves in plane-parallel plates). A light beam 
emerging from a mercury lamp was focused through 
the crystal (perpendicular to the direction of sound 
propagation) upon a photographic plate, which was 
mounted in a distance of about 4 m behind the crystal. 
Using an ultrasonic frequency of 15 Mc/s it was pos- 
sible to measure the sound velocity with an accuracy 
of  0.2%. We made use of the improved method de- 
scribed by Hausstihl (1956). In specimens with parallel 
faces (tolerance, 1 /z) standing waves were generated, 
the frequency being properly adjusted. By variation of 
the frequency it was usually possible to stimulate and 
measure each of the three isonormal elastic waves 
separately and undisturbed. Thus, apart from its higher 
accuracy, the optical method reveals its superiority over 
pulse echo methods when applied to transparent com- 
pounds. In triclinic crystals, where the three mutually 
orthogonal displacement vectors are usually inclined 
with respect to the propagation direction and its nor- 
mal plane, respectively, all three isonormal waves are 
generated simultaneously by a longitudinal X-quartz 
transducer; moreover, they are generated at every re- 
flexion. The consequence on pulse echo experiments is 
a complex spectrum of superimposed echoes, which 
can be resolved and analysed only with difficulty. 

The single crystals were grown by deposition on seed 
crystals suspended in saturated aqueous solutions at 
lowering the temperature from 60 to 30 ° C. We ob- 
tained bright, optically immaculate crystals of about 
6 cm in length. According to the IRE-conventions, a 

Cartesian coordinate system el, e2, e3 has been chosen 
as follows: 

I j o  . e2 parallel to a2, e3 parallel to a3, 
el parallel to [e2 x e3] 

(a t and a~ being the fundamental vectors of the crys- 
tal lattice and the reciprocal lattice, respectively, in 
Groth's (1910) mounting). 

From the ATO single crystals seven specimens were 
cut, the faces of which were naturally grown faces or 
perpendicular to them. In 15 different nearly homo- 
geneously distributed directions we were able to meas- 
ure 34 sound velocities. From the KTO single crys- 
tals 5 rectangular specimens were cut which were lim- 
ited by the faces (100), (010), (001), (110), (1T0), (101), 
(101-), (011), (011-), (111/2), (Tll/2), (1ii/2) and (111/2-) 
(related to the Cartesian system); in these 13 direc- 
tions 30 different sound velocities were determined. The 
measurements were carried out at 20°C. 

The correlation between the sound velocity, v, meas- 
ured in a certain direction (direction cosines al, a2, a3), 
and the components of the elastic tensor c~jkt is achieved 
by the following third order determinant (Christoffel's 
equation): 

I~  cij~zajaz-O~kOv2[=O (1) 
jl 

(i, j ,  k, l = 1, 2, 3 ; 0 = density; fi~g = Kronecker symbol). 
Each measured value of v, when inserted into (1), 

yields a third order equation for the 21 unknowns 
c~j~t. Hence at least 21 measurements are necessary. 
Additional measurements increase the accuracy. The 
solution of this redundant non-linear system of equa- 
tions was obtained by the method of least squares 
(Haussiihl & Siegert, 1969). The ctjkz were fitted in or- 
der to minimize the sum of squares of  the determinants 
(1) divided by the derivative of the determinant with 
respect to Ov 2. 

The method of Marquardt  (1963) for the determina- 
tion of non-linear parameters served as basis for an ite- 
ration program. This method produces repid conver- 

Table 1. Elastic stiffnesses Cmn (× 1011 dyne.cm-2), relative errors Acmn/Cmn, 
and elastic compliances Stun( × 10 -12 cm2.dyne -1) of  ATO and KTO at 20°C 

mn 11 22 33 12 23 31 44 55 66 14 
[Cmn 2"187 4"589 3"638 1"199 1"629 1"039 1"043 0"540 0"444 0"163 

ATO ]Ac/c 0"6% 0"2% 0"3% 3% 1% 3% 0"9% 2% 2% 10% 
LSrnn 8.188 4"198 3"517 -1"524 -0"981 -1"296 14-042  27 -124  25"447 0"977 

[Cmn 2"536 4"779 3"430 1"184 1"402 0"983 1"019 0"569 0"499 0"072 
KTO ~Ac/c 0"4% 0"3% 0"2% 1% 1% 4% 0"9% 3% 1% 20% 

tSmn 6"623 3"740 3"614 --1"021 --0"985 --1"235 14"643 25"926  23"210 0"278 

mn 16 24 25 26 34 35 36 45 46 56 
[Cmn --0"103 1"156 0"202 --0"377 0"377 0"203 --0"076 0"014 0"015 0"012 

ATO ~Ac/c 10% 0"7% 10% 2% 2% 5% 30% 80% 60% 80% 
I.Smn 0"576 --4"115 0"531 3"167 0"021 0"491 -0"544 0"160 -3"750 -2"088 

[Cmn -0"123 1"134 0"146 -0"270 0"219 0"147 0"040 --0"082 0"053 0"070 
KTO ~Ac/c 8% 1% 10% 3% 5% 5% 50% 10% 10% 10% 

I.Smn 2"092 --4"038 -0"477 2"346 0"548 0"890 -1"310 3"215 -4"161 -5"951 

15 
0"599 
2% 

- -  8"069 

0"612 
2% 

-- 6-758 



H. KLIPPERS AND H. S I E G E R T  403 

gence by an optimum interpolation between the Taylor 
series method and the method of steepest descent. 

In comparison with a method proposed by Neigh- 
bours & Schacher (1967), in which equation (1) is 
solved with respect to ~v 2, the method we used is 
thought to exhibit the following advantages" (a) the 
difficulty of attaching the measured velocities of the 
quasi-transversal waves to the two derived Qv 2 expres- 
sions is avoided, (b) the convergence is not in question 
because of vanishing denominators. 

As initial values for the iteration procedure we used 
for the cu~ the Qv 2 values of the fastest waves in tb_e 
three coordinate axes, and for the c~j~j the Qv 2 values 
of one of the slower waves; the remaining c components 
were put equal to zero. 

Results 

The results of the calculation are listed in Table 1. 
Here we made use of the matrix notation for tensor 
components (Nye, 1957), m, n =  1, 2, 3, 4, 5, 6 (first 
row). The second row contains the elastic constants 
(stiffnesses) Cmn in units of 10~ dyne.cm -2, the third 
row the relative errors as obtained by the least-squares 
computation. The density Q used here, was determined 
by the buoyant force method (in xylene) using speci- 
mens free from macroscopic defects, which had a weight 
of about 15 grams, QATo = 1"653 + 0"001, QrzTo = 1"858 
+0"001 (the X-ray densities are (Currie, Speakman 
& Curry, 1967): 0ATO = 1"654; OKTO = 1"859 g.cm-3). 
The fourth row of Table 1 contains the components 
of the tensor of elastic moduli (compliances) Smn, 
which follow by matrix inversion from Cem. Smn = Olcn. 

The longitudinal normals, i.e. those directions along 
which a purely longitudinal wave and two purely trans- 
versal waves may propagate, are also the directions 
of extrema of the longitudinal stiffnesses e~ 111 = aataaja~t, 

aUCijkt (Fedorov, 1968). From a computation of c~111 in 
different directions we obtained the direction cosines 
of the longitudinal normals, listed in Table 2(a) to- 
gether with the appropriate values of c~111. 

The volume compressibility is K =  ~. s~ee. KATo = 
ik 

8"301. 10 -12, K~To =7"495. 10 -12 cm2.dyne -1. 
According to Hausstihl (1967), the deviations from 

the Cauchy relations may be described by a second- 
rank tensor grs : 

grs=(ciije--cij~I¢) . (--  1) mn(m-n)/2 (2) 

( i ~ j ;  i ~ k ;  r # i , j ;  s ¢ i ,  k;  r, s, i , j ,  k = l ,  2, 3). Multi- 
plying by the volume compressibility one obtains a 
dimensionless tensor g* =grs" K; sign and amount of 
its components allow conclusions about the form of 
bonding in the crystal structure. Related to el, e2, e3 the 
components of g*s are the following: 

ATO: g1"1=0-486; g2*z 0.414, * = • ga3= 0.627 
g~'2=0-075; g~3=-0"125; g ~ = - 0 - 1 5 5  

KTO" g~'1=0"287; g~2 = 0"310; g~'3 = 0"513 
g~'2=0.091; g2"3=-0.001; g ~ = - 0 . 0 0 2  

e I 

n I 

The values Cmn in Table 1 display a graduation as ex- 
pected: the constants Cmm (m = 1, 2, 3) are 2 to 3 times 
larger than the Cmn (m,  n = l ,  2, 3; m # n ) ,  and these 
are larger than the Cram (m = 4, 5, 6). All the other com- 
ponents are essentially one order of magnitude smaller. 
Nevertheless, some of them (e.g. c24) are rather large, 
because the coordinate system el, e2, e3, which was 
chosen rather arbitrarily, has no particular relation to 
the elastic properties. In orthorhombic crystals, for 
comparison, the constants under consideration, Cmn-= 

e I 

n I 

Discussion 

(o) (bl 

Fig. 1. Stereogram of the longitudinal normals n~ and the axes eq belonging to ~[~min for (a) ATO, (b) KTO. 
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crs ( r=  1, 2, 3, 4, 5, 6; s=4 ,  5, 6; r_<s), vanish, if the 
tensor is referred to the crystallographic axes. If it is 
referred to other axes, the constants Crs will in general 
be different from zero. Accordingly, in triclinic crys- 

I ! l' tals a coordinate system e~, e2, ea should be found, 
where the constants Crs become as small as possible. 
A measure of their magnitude is the quantity 

Three particular constants (C34 , C35 and c4s) may be 
made zero (Fedorov, 1968), when e i is taken along a 
longitudinal normal and e~ and e; along the displace- 
ment vectors of the two purely transverse waves prop- 
agating along e I. The values of ~0, obtained after the 
corresponding transformations are (for e I parallel to 
the maximum (I), saddle point (II), and minimum (III) 
of c~m, respectively; units 10 u dyne.cm-Z): 

Osfxo = 0.7063; qs~ro = 1.003; ~-IIIO~ATO = 1"086 
~TO=0.5591" ~ O - - 1 " 1 1 7 ;  ,nKrO--l.121 , - -  ~ ' I I I  - -  " 

The minimal • was computed by variation of the Car- 
t t t tesian axes e~, e,, e3. The direction cosines b, of these 

axes, for • at minimum, are listed in Table 2(b). The 
minimal values of q~ are: 

~ATO=0"4589 X 1011" ~KTO=0"3991 X 10 ~1 dyne.cm -2. m i n  ~ ~ m l n  

The longitudinal normals n t and the axes e~, for min- 
final 4,  are shown in a stereogram in Fig. 1. Roughly, 
these two sets coincide, but it should be noted, that 
the longitudinal normals n~ are not mutually perpen- 
dicular to each other. 

The quantity Cibmin may be regarded as a measure 
for the deviation of the elastic behaviour of a triclinic 
crystal from an orthorhombic crystal and might be 
called 'triclinicity' (with respect to elasticity). A com- 
parison with other triclinic crystals is possible by means 
of the dimensionless quantity T =  K.  ~min (K= volume 
compressibility). 

The only other triclinic crystal measured so far, 
C u S O  4 .5 H20, has a triclinicity of about half that of 
ATO and KTO: 

TAxo = 0"381 ; TKro = 0"299; Tcuso4.sri2 o = 0" 161. 

Since the absolute errors of all Cmn are in the same 
order of magnitude, the small constants extfibit a large 
relative error, as shown in Table 1. 

A comparison of the elastic constants of ATO and 
KTO with other crystals shows, that the elastic anis- 
otropy, which may be defined for instance by the ratio 
of maximum and minimum of c1111 

(;max\ ['m~] 
~ '1111  / C l l l l  
~'mi n/ =4"67; /~'min I =4"2 
~'1111 / A T O  \ " 1 1 1 1  / K T O  ' 

is extraordinaily high in the present case (for 
C u S O  4 . 5 HaO it is e.g. 1.8). Compared with all crystals 
previously measured (Bechmann & Hearmon, 1966) 
this anisotropy is only exceeded by tartaric acid 
(c11/C2a=4"8). This strong anisotropy has the conse- 
quence, that even a low misorientation of the crystal 
specimens induces a large change in the sound velocity. 
This may be the reason that the errors in the present 
investigation are about the two times those in the 
CuSO4.5 HEO measurements. A change of direction by 
one degree may produce a velocity change of 1.5 %. One 
therefore takes full advantage of the high measuring 
accuracy of the Schaefer-Bergmann method only, if 
the accuracy of the orientation of the specimens is 
guaranteed within 4' (in directions with large gradient). 

The deviations of the elastic waves from pure modes 
are very high, too. The displacement vectors of the 
quasi-longitudinal waves deviate maximally by an 
angle of 30 ° from the propagation direction. Therefore 
we were able to obtain in almost all directions all 
three waves by use of a longitudinal quartz transducer. 

The principal values of the departures from the 
Cauchy relations, g~, are positive throughout as usually 
found in hydrates and crystals with asymmetric con- 
stituents (organic molecules) (Haussiihl, 1967). Because 
of the high asymmetry of the NH4 ion the fact that 
g*ATO-..,*~TO may also be understood. 11 " -  ,511 

Finally we may conclude that the method proposed 
by Hausstihl & Siegert (1969) was successful also in 
the present case of triclinic crystals possessing high 
elastic anisotropy, where the initial values for the itera- 
tion process differ more strongly from the final values 
than in more isotropic crystals. 

The numerical calculations were carried out with 
the aid of the IBM 360-75 computer at the KFA 
Jiilich. 

We are very much indebted to Prof. S. Haussiihl for 
his kind support in this work. 

Table 2. (a) Direction cosines a~ of the longitudinal normals and appropiate value of c~m ( × 1011 dyne. cm-2), 
(b) direction cosines b~ of  the coordinate system e~ belonging to ~min 

(a) al a2 a3 c~111 (b) bl b2 b3 

Maximum fl) 
ATO Saddle point flI) 

Minimum (III) 

-0.0466 0 .8898  0.4540 5.89 el' -0"0562 0 .8896  0.4533 
0.7142 -0.5580 0.4226 2"88 ea' 0.5649 -0-3461 0"7491 

-0-7994 -0.3813 0-4643 1-26 e2' -0-8232 -0-2981 0"4831 

Maximum fl) 
KTO Saddle point (II) 

Minimum (III) 

-0.0400 0"9162 0"3987 5"84 el' -0"0481 0"9179 0-3939 
0"7743 --0"5523 0.3090 3"02 e3" 0"5814 --0"2950 0"7583 

-0"7685 --0"4086 0"4924 1"39 e2" -0-8122 --0"2655 0"5195 
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Thermal Vibrations of Atoms in Ag-Cd and Ag-Zn Solid Solutions 
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From X-ray measurements at room and low temperatures it was found that the characteristic tempera- 
ture O of the system Ag-Cd decreases by about 17 °K in the concentration range from 0 to 30 at.% Cd. 
For the system Ag-Zn no systematic change of O with increasing concentration of Zn was observed. 

Introduction 

The temperature dependence of the intensity of X-ray 
Bragg reflexions from solids can be described by the 
Debye-Waller factor exp ( - 2 M ) ,  which contains the 
characteristic temperature O, a parameter charac- 
terizing the material. 

The present paper describes measurements of the 
integrated intensity of re flexions from the face-centred 
cubic metallic solid solutions of cadmium or zinc in 
silver; these measurements lead to a determination of 
their characteristic temperature and its dependence on 
concentration. These alloys are interesting from the 
following point of view. Measurements of the lattice 
specific heat and the elastic moduli, C~1, of c~-phase 
alloys of the noble metals near 0 °K suggest a change 
in characteristic temperature O which is, according to 
Collins (1967), a function only of the electron/atom 
ratio for solutions whose ion cores are isoelectronic 
with the solvent; i.e. for the two series of Hume- 
Rothery alloys for example: 

Number of valency electrons 

1 2 3 4 5 
Cu: Zn Ga Ge As 
Ag: Cd In Sn Sb 

In our case both cadmium and zinc atoms have two 
valency electrons and hence the valency effect is the 

* Praha 2, Ke Karlovu 5, Czechoslovakia. 

same in both alloys. On the other hand the ion cores of 
cadmium atoms are identical with the ion cores of 
silver atoms, whereas the ion cores of zinc atoms are 
identical with the ion cores of copper atoms. The same 
valency effects in both systems enable us to determine 
the influence of the other factors: the different atomic 
masses of Cd and Zn and the opposing dilatation 
effects during the substitution into the silver crystal 
lattice. 

Experimental 

The measurements were carried out at room and liquid 
nitrogen temperatures with an URS X-ray diffrac- 
tometer with the use of monochromatized Cu K~ ra- 
diation and a Geiger counter. 

The samples were cooled in a vacuum chamber* by 
contact with a copper reservoir filled with liquid 
nitrogen. The temperature of the sample was deter- 
mined by means of a thermocouple; the accuracy of 
the temperature determination was estimated to be 
about + 4°K. 

Solid solutions Ag-Cd and Ag-Zn were prepared 
and homogenized by annealing for about 24 hours in 
vacuum at a temperature of 650 °C according to Birchenal 
& Cheng (1949). By filing and subsequent grinding a 
fine powder was obtained. The effects of the deforma- 
tion of the material were removed by a further anneal 
for 3 hours in vacuum at a temperature of 500°C. From 

* For a description of this low temperature camera see 
Valvoda (1969). 


